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ABSTRACT

In this paper, we propose a novel video encryption scheme based on multiple digital chaotic systems, which is
called CVES (Chaotic Video Encryption Scheme). CVES is independent of any video compression algorithms,
and can provide high security for real-time digital video with fast encryption speed, and can be simply realized
both by hardware and software. What’s more, CVES can be extended to support random retrieval of cipher-video
with considerable maximal time-out; the extended CVES is called RRS-CVES (Random-Retrieval-Supported
CVES). Essentially speaking, CVES is a universal fast encryption system and can be easily extended to other
real-time applications. In CVES, 2n chaotic maps are used to generate pseudo-random signal to mask the video,
and to make pseudo-random permutation of the masked video. Another single chaotic map is employed to
initialize and control the above 2n chaotic maps. Detailed discussions are given to estimate the performance of
CVES/RRS-CVES, respectively from the viewpoints of speed, security, realization and experiments.

Keywords: Chaotic Video Encryption Scheme (CVES), Real-Time, Random Retrieval, RRS-CVES, Piecewise
Linear Chaotic Map (PLCM)

1. INTRODUCTION

In the digital world nowadays, the security of digital images/videos becomes more and more important since
the communications of digital products over network occur more and more frequently. In addition, special and
reliable security in storage and transmission of digital images/videos is needed in many digital applications,
such as pay-TV, confidential video conferencing and medical imaging systems, etc. Generally speaking, the well-
developed modern cryptography should be the perfect solution to this task. As we know, many perfect ciphers
have been established and applied widely since 1970s, such as DES, IDEA and RSA [1]. But most conventional
ciphers cannot be directly used to encrypt digital video in real-time systems because their encryption speed is
not fast enough, especially when they are realized by software. In addition, the existence of different compression
algorithms in digital video systems makes it more complicated to incorporate the encryption part into the whole
system. Thus, to protect the content of digital images/videos, some specific encryption systems are needed.

Recently, many different video encryption schemes have been proposed [2–12]. Most of them are joint
compression-encryption methods, which are specially designed to provide reliable security for MPEG video
stream [4,5,7–12]. From the works of [13–15], some video encryption schemes are known to be not secure enough
from strict cryptographic viewpoint. Actually, there still exist trade-offs between the security and the encryption
speed in many video encryption systems [13].

In this paper, we propose a novel video encryption schemes based on multiple chaotic systems, which is called
Chaotic Video Encryption Scheme (CVES). It can provide high security with rather fast encryption speed, and
can be realized simply by both hardware and software. CVES is independent of any video compression algorithms
so it will not be limited by the format of encrypted video, which is one important merit of CVES compared with
other video encryption systems. In addition, CVES can be extended to support random retrieval of encrypted
video with considerable maximal time-out. Essentially speaking, CVES is a UNIVERSAL fast encryption system
with high security, so it can be easily extended to other real-time applications.

∗ This paper has been published in Proceedings of SPIE, vol. 4666, pp. 149-160, Real-Time Imaging VI, edited by Nasser
Kehtarnavaz, March 2002, SPIE–The International Society for Optical Engineering.
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This paper is organized as follows. In Sect. 2, we firstly give a brief survey of chaotic cryptography nowadays
and the realization problem of digital chaotic systems. CVES and its extended version supporting random
retrieval RRS-CVES (Random-Retrieval-Supported CVES) are detailedly described in Sect. 3. The performance
of CVES/RRS-CVES is estimated in Sect. 4, respectively from the viewpoints of the speed, security, realization
and experiments. The last section is the conclusion of this paper.

2. CHAOTIC CRYPTOGRAPHY

2.1. Chaos vs. Cryptography

Chaos theory is established since 1970s from many different research areas, such as physics, mathematics, biology
and chemistry, etc. [16]. The most well-known characteristics of chaos are the so-called “butterfly-effect” (the
sensitivity to the initial conditions), and the pseudo-randomness generated by deterministic equations. Many
researchers have pointed out that there exists tight relationship between chaos and cryptography [17–20]. Many
fundamental characteristics of chaos, such as the mixing property and the sensitivity to initial conditions, can be
connected with “confusion” and “diffusion” property in good ciphers. Considering chaos theory has developed
well in recent decades, chaos may become a new rich source of new ciphers.

Interestingly, the idea of chaotic cryptography can be traced back to Shanon’s classic paper [21] titled “Com-
munication Theory of Secrecy Systems” published in 1949. Of course, he couldn’t use the unborn word “chaos”;
he just mentioned that well-mixing transformations used in a good secrecy systems can be constructed by the
basic stretch-and-fold mechanism, which really implies “chaos” (consider the baker map) [16]. In fact, any
conventional cipher can be regraded as a chaotic or pseudo-chaotic system, since confusion and diffusion mean
deterministic disorder – chaos [1, 16,17].

2.2. State-of-the-Art of Chaotic Cryptography

The first scientific paper about chaotic cryptography [22] was published in 1989, in which the author suggested a
novel stream cipher based on one-dimensional chaotic map. In the next year, the chaos synchronization technique
was firstly reported and the secure communications via chaos synchronization was presented [23]. From then on,
chaotic cryptography has developed from different areas, chiefly physics, electrical and electronics engineering,
computer science, and applied mathematics. Many digital chaotic ciphers [18–20,24–31] and analog chaotic secure
communication approaches [19] have been proposed; the cryptanalytic works also have been developed to estimate
the security of the proposed chaotic ciphers [18, 19, 26, 31–38]. It has been known that many proposed chaotic
cryptosystems can be broken by some cryptanalytic methods, such as most analog chaotic secure communication
approaches [36,37] and some digital chaotic ciphers [19,31,32,34,35].

For digital chaotic ciphers, the following problems should be considered carefully. 1) What about the
encryption speed? Compared with the conventional ciphers, most chaotic ciphers have much slower encryption
speed. There are some different reasons to cause such a problem: multiple iterations for encrypting one plain-
block, the use of floating-point arithmetic and complicated chaotic maps. 2) What chaotic map should be
used? Most chaotic ciphers must use specific chaotic maps to ensure the security, which will limit their wider
applications. It is desired that a chaotic cipher can work well with a large number of chaotic maps. 3) How to
realize the chaotic ciphers, by hardware or software? A good chaotic cipher should be realized easily by
both hardware and software with low cost. In [27], we gave detailed discussions of these problems.

2.3. How to Make Fast Chaotic Ciphers without Loss of Security?

There are two general ways to design digital chaotic ciphers: 1) generating pseudo-random key-stream using
chaotic systems to encrypt the plaintext; 2) using the plaintext and/or secret key as the initial conditions
and/or control parameters, iterating/inverse-iterating chaotic systems for n times to obtain the ciphertext. The
first way corresponds to the stream ciphers and the second to the block ciphers. Investigate currently known
digital chaotic ciphers, we can find the following three facts: 1) Most chaotic block ciphers require to iterate
the employed chaotic systems for many times to make the ciphertext independent of the plaintext, which will
markedly reduce the encryption speed. 2) Most chaotic stream ciphers employ one single chaotic system to
generate pseudo-random numbers to mask the plaintext, which may weaken the capability to potential attacks.
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We have discussed the second fact in [27] and suggest using multiple chaotic systems instead of one single chaotic
system in chaotic stream cipher. 3) Generally, chaotic stream ciphers run much faster than chaotic block ciphers.

Apparently, it is not very easy to design a fast chaotic cipher without loss of security. This paper suggests a
novel solution to this problem – CVES, which is a product cipher of a chaotic stream sub-cipher and a chaotic
block sub-cipher. Multiple chaotic systems are used to avoid the potential insecurity of the stream sub-cipher,
and an entirely novel encryption scheme is used to avoid the defect of the block sub-cipher. The high security is
ensured by the product of the stream sub-cipher and the block sub-cipher. In addition, to further promote the
encryption speed of CVES, the following basic principles are also adopted.

1) Using fixed-point arithmetic instead of floating-point arithmetic. As we know, the fixed-point
arithmetic runs much faster than the floating-point arithmetic. When the chaotic systems are realized in digital
computer with finite precision, the use of fixed-point arithmetic will be very useful to the encryption speed.
Furthermore, the fixed-point arithmetic is also helpful to simplify the hardware realization (i.e., reduce the total
cost) and improve the portability between different platforms or hardware structures.

2) Using the simplest chaotic systems. More complicated chaotic systems are usually suggested being
used to ensure the security of established chaotic ciphers. But the use of complicated chaotic systems will lower
the encryption speed twofold: i) the more complicated the chaotic maps, the more time the chaotic iterations
will consume; ii) many complicated chaotic systems must run with floating-point arithmetic, which makes the
iterations further slower. As we know, the simplest chaotic systems are logistic map and piecewise linear chaotic
maps (PLCM). Only one multiplication/division and several additions/subtractions (comparisons) are needed
for one iteration of the above chaotic maps. Actually, piecewise linear chaotic maps have been widely used to
design digital chaotic ciphers [24–27, 30, 31]. In this paper, piecewise linear chaotic maps are used in CVES. In
Sect. 3.4.2, some knowledge about PLCM is given.

3) Using larger encryption unit. For block ciphers, larger encryption unit means larger block size; and for
stream ciphers, it means larger size of single key in the generated key-stream. It is obvious that the encryption
speed has positive relationship with the size of encryption unit. Of course the size of encryption unit cannot be
too large, which will make the secret key too long and the encryption system unfeasible.

2.4. Realization of Digital Chaotic Systems

When chaotic systems are used to construct digital ciphers, one important issue must be carefully considered,
which is about the dynamical degradation of digital chaotic systems realized in finite precision. It has been found
that the dynamical properties of digital chaotic systems are far different from theoretical ones [30,32,33,38–41].
The related problems include short cycle-length, non-ideal distribution and correlation, etc. Up till now, there
is not yet an established theory to measure such degradation and direct us how to improve it.

Assume the finite precision is L (bits), there are the following reasons to cause this problem: 1) All values
represented with finite precision are binary decimals formulated as a/2L(a = 0 ∼ 2L − 1). Since the Lebesgue
measure of all the binary decimals is zero, they cannot represent the exact dynamics of the chaotic systems
defined on real interval. 2) There are only 2L values to represent the chaotic orbits. So the cycle length of
any chaotic orbit will be not larger than 2L, and almost every one will be much smaller than 2L. 3) Some
quantization errors will be introduced when the digital chaotic systems are iterated, which makes the dynamics
of digital chaotic systems badly depart from the theoretical one.

In order to overcome the degradation, several engineering remedies have been proposed: using higher finite
precision [32,33], perturbation-based algorithm by pseudo-random number [30,40], and cascading multiple chaotic
systems [41]. In this paper, the perturbation-based algorithm proposed in [30] is employed to realize digital
chaotic systems. Here, we give a brief description to the perturbation-based algorithm.

A simple pseudo-random number generator (PRNG) is employed to make a small perturbing signal pt(i). The
l lowest bits of the chaotic orbits are perturbed by pt(i) with perturbing interval ∆. The perturbation function
can be XOR or mod function. The perturbing PRNG can be freely selected in different realizations, such as the
maximal length LFSR (m-LFSR) in hardware and the linear congruential generators in software. In order to
maintain dynamics of the chaotic systems, pt(i) should be much smaller than the perturbed chaotic orbit, i.e.,
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l � n. But it cannot be too small, or such perturbation cannot provide enough improvement on the dynamical
properties of digital chaotic systems.

The perturbation-based algorithm can efficiently improve the cryptographic properties of the digital chaotic
systems. Firstly, the cycle length of the chaotic orbit can be controlled by the cycle length of the perturbing
PRNG. Assume the cycle length of the PRNG is T , the cycle length of the chaotic orbit can be easily deduced to
be σ ·∆ · T , where σ is a positive integer [30]. If we use one m-LFSR as the perturbing PRNG, whose degree is
the finite precision L, the cycle length will be σ ·∆ ·(2L−1) � 2L. Secondly, the perturbing signal smoothens the
invariant density function slightly, which will not influence the security of the digital chaotic ciphers. Thirdly,
the small perturbation can drive the chaotic orbit into a more complicated world because chaos is sensitive to
initial conditions. The combination of digital chaos and perturbing signal will make both chaos-theory-based
and conventional cryptanalysis much more difficult.

3. CHAOTIC VIDEO ENCRYPTION SCHEME – CVES

The Chaotic Video Encryption Scheme (CVES) is shown in Fig. 1. The plain-video is encrypted cluster by
cluster, where a cluster can be one or more video frames. In fact, we can also consider the video stream as a
continuous bit-stream without any video format and take fixed-size bits as a plain-cluster. Obviously, CVES can
be easily extended to other real-time secure applications.
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Figure 1. Encryption and Decryption Procedure of CVES

3.1. Components

Before describe the encryption/decryption procedure of CVES, we firstly introduce the components of CVES.
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1) ECS Pool: 2n digital chaotic systems, which are called Encryption Chaotic Systems (ECS) and denoted
by ECS(1) ∼ ECS(2n), compose the kernel part of CVES – ECS Pool. All 2n ECS-es are based on a same one-
dimensional chaotic maps Fe(xe, pe) defined on I = [0, 1], with different control parameters pe(1) ∼ pe(2n). All
ECS-es are realized in finite computing precision L (bits) with perturbation-based algorithm, and one maximal
length LFSR m-LFSR1 is used as the perturbing PRNG. The degree of m-LFSR1 is L1, and the perturbing
intervals of the 2n ECS-es are ∆e(1) ∼ ∆e(2n). The current states of the 2n ECS-es xe(1) ∼ xe(2n) are stored
in 2n L-bit memory units.

2) CCS: A single digital chaotic systems is used to control the initialization and the chaotic iterations of
the 2n ECS-es. It is called Control Chaotic System (CCS). CCS is also based on a one-dimensional chaotic
map Fc(xc, pc) defined on I = [0, 1], which can be different from Fe. CCS is also realized in finite precision L
(bits) with perturbation-based algorithm, and another maximal length LFSR m-LFSR2 is used as the perturbing
PRNG. The degree of m-LFSR2 is L2, and the perturbing interval of CCS is ∆c.

3) CIT: A Control Information Table (CIT) is used to store the required information in CVES. In regards
to the information stored in CIT, please see Sect. 3.2 and 3.3. The CCS and CIT compose the controller part.

4) Stream Sub-Cipher: A 2n×1 MUX controlled by CCS is employed to select an ECS to generate a L-bit
chaotic key, which is used to XOR the plain-cluster L-bit block by L-bit block. The plain-cluster encrypted by
the stream sub-cipher is called pre-masked plain-cluster.

5) Block Sub-Cipher: A 2n × 2n L-bit sorter and 2n n-bit memory units compose a Pseudo-Random
S-Box Generator (PRSBG). The generated pseudo-random n × n S-Box is used to substitute the pre-masked
plain-cluster n-bit block by n-bit block. Here please note that the PRSBG at encryption end and the one at
decryption end should be inverse.

3.2. Encryption/Decryption Procedure

Based on the introduction to the components of CVES, we can describe the encryption procedure as follow.
Here, we consider the xe(1) ∼ xe(2n), pe(1) ∼ pe(2n) and xc, pc as L-bit binary integers, not the binary decimals
in [0, 1] (under L-bit fixed-point arithmetic), to simplify the description.

Secret key: K = {xc, pc}, the key space is 22L.

Initialization: a) Iterate CCS for 2n times to obtain 2n pseudo-random initial conditions xe0(1) ∼ xe0(2n)
for all ECS-es. The 2n initial conditions are stored in CIT. b) Iterate CCS for 2n times again to obtain 2n

pseudo-random control parameters pe0(1) ∼ pe0(2n) for all ECS-es. If there are at least two control parameters
are same or any control parameter equals 0†, discard all 2n control parameters and re-initialize the ECS-es. The
2n control parameters are also stored in CIT. c) Sort the 2n initial conditions xe0(1) ∼ xe0(2n) to generate
a pseudo-random rank sequence l(1) ∼ l(2n). The sequence is used to initialize the perturbing intervals as
follows: ∆e(i) = Pr(l(i)), where Pr(i) denotes the ith prime number larger than 2. The 2n primes numbers
Pr(1) ∼ Pr(2n) are pre-calculated and stored in CIT. Then iterate CCS for one or more times to obtain the
pseudo-random perturbing interval ∆c, which should be smaller than 2n, and also a prime number. d) Iterate
each ECS(i) for η > dλ(i)e times, where λ(i) is the Lyaponov exponent of ECS(i).

Encryption Procedure: One plain-cluster is firstly encrypted by the stream sub-cipher, then by the
block sub-cipher. We respectively depict how the two sub-ciphers work. Stream Sub-Cipher: The stream
sub-cipher encrypts the plain-cluster L-bit block by L-bit block. Assume the L-bit plain-block and the L-bit
cipher-block are bp and bc respectively. The encryption procedure can be denoted as follows: run CCS once, get
In = (xc mod 2n)+1, then iterate ECS(In) once; bc = bp⊕xe(In). If the last block has L′ < L bits, just encrypt
it with the highest L′ bits of xe(In). Note that only the selected ECS is iterated once for the encryption of one
plain-block, which is very useful to promote the encryption speed and enhance the security of the stream sub-
cipher. The encryption procedure goes until the plain-cluster exhausts, and then the pre-masked plain-cluster
is sent to the block sub-cipher for further encryption. Block Sub-Cipher: The block sub-cipher is a simple

†If L is not too larger than n, the probability of this event may be rather large to make the initializations slow. For
example, when n = 8, L = 16, the probability is about 0.4. So it is desired that L� n, which can ensure the probability
is near 0 (when n = 8, L = 24, the probability is only about 0.002).
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substitution cipher with time-variant n× n S-Box pseudo-randomly controlled by the 2n ECS-es. The S-Box is
generated as follows: after the last plain-cluster is encrypted and before the current plain-cluster is encrypted
by the stream sub-cipher, sort the 2n current states of all ECS-es, then the indexes of the sorted states and the
indexes of the original states compose the S-Box for encryption. Use the generated S-Box to substitute the plain-
cluster pre-masked by the stream sub-cipher n-bit block by n-bit block‡. After the encryption of the current
plain-cluster is complete, the stream sub-cipher continues to encrypt the next plain-cluster. The encryption
procedure goes until the plain-video exhausts.

Decryption Procedure: Decryption is the inverse of the encryption (see Fig. 1). The cipher-cluster is
firstly decrypt by the block sub-cipher, where the S-Box is the inversion of the one for encryption. Then the
pre-decrypted cipher-cluster is decrypted by the stream sub-cipher.

3.3. Modified CVES Supporting Random Retrieval – RRS-CVES

In the above CVES, random retrieval of cipher-video cannot be supported, since the chaotic orbits of CCS and
all ECS-es cannot be predicted only from the position of a cipher-cluster in the whole cipher-video. To decrypt a
cipher-cluster, we must decrypt all cipher-clusters before it. That is to say, the original CVES can only support
sequent retrieval, not random retrieval. Fortunately, we can make some modifications on the original CVES to
add this function. The modified CVES is called Random-Retrieval-Supported CVES (RRS-CVES).

Initialization: Besides the initialization operations a)∼d) in original CVES, the following three operations
are added. a′) Generating Reset Information: Run the CCS for 2 + 2n times to generate two L-bit pseudo-
random numbers p+, x+ and 2n m-bit pseudo-random numbers τe(1) ∼ τe(2n)§, which are also stored in CIT.
Here, τe(i)(i = 1 ∼ 2n) should satisfy the following requirements: gcd(τe(i), 2) = 1 and τe(i) ≥ τmin, where
τmin should not be very small. In regards to the selections of m and τmin, we will give some details in Sect.
3.4. The 2 + 2n extra pseudo-random numbers are used to reset the 2n ECS-es. b′) Generating Sequence of
Chaotic Iterations: Sort the 2n pre-defined control parameters pe0(1) ∼ pe0(2n) to generate a rank sequence
re(1) ∼ re(2n), where re(i) = 1 ∼ 2n. The sequence is stored in CIT and will be used to control the chaotic
iterations of the 2n ECS-es. c′) Initializing Iteration Counters: 2n L-bit memory units C1(1) ∼ C1(2n) are
used to store the iteration numbers of the 2n ECS-es. Another 2n L-bit memory units C2(1) ∼ C2(2n) are used
to store the reset numbers of the 2n ECS-es. Set the 2 · 2n L-bit memory units to zeros.

To sum up, for RRS-CVES, there are the following predefined data stored in CIT: 1) Initial Conditions –
xe0(1) ∼ xe0(2n); 2) Control Parameters – pe0(1) ∼ pe0(2n); 3) Perturbing Intervals – ∆e(1) ∼ ∆e(2n); 4)
Prime Numbers List – Pr(1) ∼ Pr(2n); 5) Reset Information – τe(1) ∼ τe(2n) and p+, x+; 6) Rank Sequence
for Chaotic Iterations – re(1) ∼ re(2n); 7) Iteration/Reset Counters – C1(1) ∼ C1(2n) and C2(1) ∼ C2(2n). In
original CVES, only the first four ones are required.

Encryption Procedure: In RRS-CVES, the stream sub-cipher is modified with reset mechanism, but the
block sub-cipher is untouched at all. In RRS-CVES, re(1) ∼ re(2n) is used to select an ECS to encrypt the
current plain-block (for the ith plain-block, select ECS(re(i mod 2n)) as the current ECS), instead of iterating
CCS in original CVES. For any ECS(i), after it runs once, increase its iteration counter by 1: C1(i) + +. If
C1(i) mod τe(i) = 0, reset ECS(i) as follows: xe0(i) = (xe0(i) + x+) mod 2L, xe(i) = xe0(i), and C1(i) =
0, C2(i) + +. If C2(i) mod τe(i) = 0, reset ECS(i) as follows: pe0(i) = (pe0(i) + p+) mod 2L, pe(i) = pe0(i) and
C1(i) = C2(i) = 0. Decryption Procedure: Make the same modifications like encryption procedure.

From the encryption procedure of RRS-CVES, we can see the following fact. Consider the cipher-video as
a L-bit data-stream, if we know the position of one cipher-cluster in the L-bit stream, it is possible to recon-
struct the corresponding states of all ECS-es and then decrypt the cipher-cluster, within considerable maximal
time-out. Assume the position of the cipher-cluster is IL, i.e., the total number of L-bit cipher-blocks before the
cipher-cluster is IL. We can reconstruct all 2n ECS-es as follows:

‡The size of any plain-cluster should be divided exactly by n, otherwise some synchronization marks must be added
and the cipher-video must have some specific format. When n = 8, it is rather easy to satisfy this requirement.

§An m-bit number x′ can be obtained from L-bit chaotic states x as follows: x′ = x mod 2m or x′ = x >> (L−m).
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1) IECS = (IL mod 2n) + 1, I ′L = IL/2n;
2) i = 1 ∼ 2n: Ic1(i) = I ′L/τe(i), I ′c1(i) = I ′L mod τe(i), Ic2(i) = Ic1/τe(i);
3) i = 1 ∼ 2n: xe(i) = (xe0(i) + Ic1(i) · x+) mod 2L, pe(i) = (pe0(i) + Ic2(i) · p+) mod 2L;
4) i = 1 ∼ IECS : Run ECS(i) for Ic1(i)′ + 1 times, and i = IECS + 1 ∼ 2n: Run ECS(i) for Ic1(i)′ times;
5) Decrypt the cipher-cluster as normal procedure.

We can see some pre-computation is used to reconstruct the current states of the 2n ECS-es. Thus, the maximal
time-out for random retrieval will be determined by the

∑IECS

i=1 (I ′c1(i) + 1) +
∑2n

i=IECS+1 I ′c1(i) times chaotic
iterations in step 4). Assume the consuming time for one chaotic iteration is τ0, the maximal time-out τ will
satisfy 2n · τmin ≤ τ/τ0 ≤ 2n+m. In the Sect. 4.1, we will further discuss this problem.

3.4. Configure CVES and RRS-CVES

3.4.1. Configuration Parameters

To optimize CVES and RRS-CVES in practical applications, some parameters should be carefully configured.

The most important system parameters are L and n. 1) L: Since the key space is 22L, L should be large
enough to provide high security. In addition, to simplify the realization of CVES in digital computers, L = 32
or 64 is suggested. 2) n: Apparently, the realization complexity of CVES/RRS-CVES has positive exponential
relation with n (O(2n · L) bits memory is needed). Thus, n cannot be too large, and we suggest n = 8.

It has been known that the perturbing parameters of the 2n ECS-es and CCS are very useful to improve the
degradation of digital chaotic maps. In [30], the authors stated that the perturbing intervals can be very large,
such as 106 when L = 40. But we argued that they cannot be too large from strict cryptographic consideration¶.
When n = 8, the maximal perturbing interval is 1021 (256th prime number larger than 2), which is acceptable.

The size of one cluster is another important parameter of CVES/RRS-CVES. Although the size needn’t be
fixed, the fixed-size cluster is useful to simplify the realization and the performance estimation. Assume a cluster
contains Pmax L-bit blocks. We will conclude that Pmax can be used to adjust the encryption speed. Generally
speaking, the larger Pmax is, the faster the encryption speed will be. Further details will be given in Sect. 4.1.
If the cluster size is variant, the average size Pmax can be used to estimate the encryption speed.

For RRS-CVES, m and τmin are used to control the reset operations of the 2n ECS-es. Generally, we suggest
m ≤ n and τmin ≥ 2n/2. Then the maximal time-out will satisfy 23n/2 ≤ τ/τ0 ≤ 22n. Since n is not too large,
such a maximal time-out can be acceptable in most real-time applications (see Sect. 4.1 for more details).

3.4.2. Selection of the Chaotic Maps

As we know [38, 42], the piecewise linear chaotic maps (PLCM) have perfect dynamical properties, i.e., crypto-
graphic properties. In addition, the most complicated components required for the digital PLCM-s are digital
dividers, which are easily realized using fixed-point arithmetic both by hardware and software. Therefore, PLCM-
s are suggest being used to construct the ECS pool and CCS, which will optimize both the encryption speed and
the realization. Of course, for digital PLCM-s, some special problems should be considered carefully to avoid
possible insecurity (see [38] for more details), but these problems are essentially avoided in CVES.

In CVES/RRS-CVES, we suggest the following PLCM used in [27,31]:

F (x, p) =

 x/p, x ∈ [0, p)
(x− p)/( 1

2 − p), x ∈ [p, 1
2 ]

F (1− x, p), x ∈ ( 1
2 , 1]

, (1)

where 0 < p < 1
2 . The above map is one of the simplest PLCM satisfying the following properties: 1) It is ergodic,

mixing and exact; 2) It has uniform invariant density function f(x) = 1; 3) The auto-correlation function of the
chaotic orbit τ(n) = δ(n), where τ(n) = 1

σ limN→∞
1
N

∑N−1
i=0 (xi − x̄) (xi+n − x̄) (x̄, σ are the mean value and

the variance of x respectively). Please see [43] for the exact definitions of related notions: ergodicity, mixing,
exactness, and the invariant density function.

¶Consider the following fact: even when L is large enough, there always exist some chaotic orbits leading to short cycle
length. An extreme example is the digital tent map, any orbits from a/2L will lead to zero after at most L iterations.
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4. PERFORMANCE ESTIMATION

4.1. Speed

We can estimate the encryption speed based on the speed of the two sub-ciphers. Generally speaking, the hard-
ware system of CVES/RRS-CVES will run faster than the software system, considering the parallel mechanism
can be used in hardware realization. Without loss of generality, assume all ECS-es and CCS are realized by Eq.
(1), and the cluster size is fixed: Pmax · L bits.

Hardware realization: Generally speaking, one L-bit fixed-point division consumes L clock cycles, then
one chaotic iteration approximately consumes L clock cycles. Consider the multiple pipelining techniques can be
used here, the stream sub-cipher encrypts one L-bit plain-block per L clock cycles. Assume the time consuming
by the sorter is τs (clock cycles), for the most time-consuming sorter, τs = 2n · (2n − 1); and for the optimized
sorter using the quick sorting algorithm, τs = n ·2n. In addition, the block sub-cipher encrypts one n-bit per one
clock cycles. To sum up, for one plain-cluster, the total consuming clock cycles is L·Pmax+τs+Pmax ·L/n, where
τs denotes the time consuming by the sorter. If the basic clock frequency is fb MHz, the final speed of CVES
will be fb

/(
1 + 1

n + τs

L·Pmax

)
Mbps. Apparently, Pmax can adjust the encryption speed. When L = 32, n = 8,

τs = n · 2n and Pmax = n · 2n = 2048, the encryption speed is 32
37fb Mbps. Such a speed is faster than many fast

conventional ciphers. Of course, the estimated speed here is just a theoretical value, and the actual speed will
be somewhat different from the exact hardware design.

From the above discussion, we can see the actual encryption speed is chiefly determined by the stream sub-
cipher when Pmax ≥ τs/L, and by the sorter in the block sub-cipher if Pmax < τs/L. For most applications of
CVES/RRS-CVES, we suggest Pmax = n · 2n. When L ≥ 32, n = 8, Pmax will be larger than τs/L (even for
the most time-consuming sorter, τs/L = 2n · (2n − 1)/L < n · 2n). Hence, in most conditions, the sorter can be
realized chiefly from the consideration of simplifying the hardware scale, not promoting the sorting speed.

Software realization: Software realization will be much slower than hardware realization since there is
no parallel mechanism in software realization. It can be approximately evaluated that the speed of software
realization will be several times slower than the hardware realization. An experimental system is designed with
Microsoftr Visual C++ to test the actual speed under Microsoftr WindowsTM platform. The final speed is
about 1/10 of the CPU frequency. For example, on a PC with a 667MHz PentiumrIII CPU, the speed is about
60Mbps; on a PC with a 223MHz Celeronr CPU, the speed is about 20Mbps. Such a speed is rather high for
a software cipher. In the experimental system, we find that the stream sub-cipher, whose kernel is the digital
PLCM-s, plays crucial role on the final speed.

Finally, let us discuss the time consuming on the initialization and the time-out problem of RRS-CVES.

For the initialization of CVES, the most time-consuming procedure is about (2 + η) · 2n chaotic iterations
and a sorting procedure of 2n data, which means (2 + η) · 2n · L + n · 2n clock cycles. Assume η = 4 > dλe =
2, the consuming time will be about (6L + n) · 2n clock cycles. When L = 32, n = 8, the time is 51, 200
clock cycles. Similarly, for RRS-CVES, the consuming time of chief procedure can be calculated to be about
(3 + η) · 2n ·L + 2 · n · 2n = ((3 + η) ·L + 2n) · 2n clock cycles. Assume η = 4 and L = 32, n = 8, the time will be
61, 400 clock cycles. Obviously, the initialization will not consume too much time.

In regards to the maximal time-out for random retrieval of RRS-CVES, we have pointed out that 23n/2 ≤
τ/τ0 ≤ 22n in Sect. 3.4.1. When L = 32, n = 8, we can get 217 ≤ τ ≤ 221 clock cycles (consider τ0 equals to L
clock cycles). If fb ≥ 200 MHz, the maximal time-out will be controlled within 10ms.

4.2. Security

4.2.1. Essentially Features to Avoid Potential Attacks

In CVES/RRS-CVES, there are three essential features to ensure the high security. 1) The stream sub-cipher
is made of 2n asymptotically independent chaotic maps (ECS Pool), and the sequence of chaotic iterations is
controlled pseudo-randomly by another independent chaotic map (CCS). The above two facts make the statistical
cryptanalysis much more difficult. 2) For different cluster, the entirely different S-Box is pseudo-randomly
determined by the current 2n states of ECS pool, which makes CVES/RRS-CVES similar to a one-time-a-pad
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cryptosystem. 3) The product of the stream sub-cipher and the block sub-cipher makes the known-plaintext and
chosen-plaintext attack impossible. Extremely, even when the 2n states of ECS pool are all known (then the
related S-Box is also known), it is impossible to derive the secret key K = {xc, pc} since the key is separated
from the 2n states by previous chaotic iterations of 2n ECS-es. Please recall the initialization procedure, η ≥ dλe
pre-iterations are required, which is used to avoid the above attack if the 2n chaotic states of the first cluster are
known. Actually, in practice, such a attack is rather difficult since the current chaotic states cannot be obtained
from a pair of plain-cluster and cipher-cluster‖.

There is one “severe defect” in CVES: the different initial conditions may generate entirely identical orbits,
which is the natural result of the fact that all chaotic maps are multi-to-one function. For example, the piecewise
linear chaotic map F (x) denoted by Eq. (1) is 4-to-1 map. ∀y ∈ (0, 1), there will be 4 values (the pre-images
of y) satisfying f(x) = y. Therefore, the chaotic orbits from the 4 initial conditions are identical. Such a defect
may be used in brute-force attacks to lessen attack complexity: when pc is searched exhaustively, one can only
search 1/4 values of xc, not all the possible values, then the attack complexity will be only 1/4 of ideal one, and
the key entropy will decrease by 2 bits. Fortunately, for digital chaotic maps realized with perturbation-based
algorithm, this problem is not friendly at all to illegal eavesdroppers, although the above result is absolutely true
in real number field. When the chaotic systems are realized with pseudo-random perturbation, the chaotic orbits
are improved to satisfy approximate uniform distribution, i.e., 2n different chaotic inputs generates 2n different
chaotic outputs. Of course, it is impossible to essentially avoid this problem, so the key entropy of CVES will
be a little less than 2L, not exact 2L.

4.2.2. Cryptographic Properties of Ciphertext

As a good cipher, CVES have the following basic cryptographic properties.

1) Balance: Since the chaotic orbits of the 2n ECS-es have uniform distribution function, then the plain-
clusters pre-masked by the stream sub-cipher will also have uniform distribution function. Consider the block
sub-cipher subsequently substitutes the pre-masked plain-clusters, which cannot change the uniform distribution
because the substitution operation with S-Box is a surjective map. Consequently, the cipher-video will be
balanced.

2) Avalanche Property with Respect to Secret Key: If the secret key K = {xc, pc} changes only one
bit, then the initial conditions or control parameters of ECS-es will change much because CCS’ sensitivity to
initial conditions and control parameters. The initial conditions and/or control parameters change a little, the
ciphertext will change much, which implies the avalanche property of ciphertext.

4.2.3. Cycle Length of the Stream Sub-Cipher

In CVES/RRS-CVES, both the stream sub-cipher and the block sub-cipher are based on the digital orbits of
the 2n ECS-es and CCS. Consider the current 2n states of ECS pool as a 2n-dimensional vector (here we call
it Chaotic Vector) , the cycle length of this vector will be a crucial factor to measure the security of the whole
system. The cycle length should be large enough to avoid repeated encryption pattern.

From [30], we can easily get the cycle length of CCS: Tc = σc ·∆c · (2L−1), and the cycle length of 2n ECS-es:
Te(i) = σe(i) ·∆e(i) · (2L − 1)(i = 1 ∼ 2n), where {σe(i)}2

n

i=1, σc are positive integers. Although it is difficult to
measure the exact cycle length of Chaotic Vector, we can derive its order:

lcm (σe(1), · · · , σe(2n), σc) ·
(
2L1 − 1

)
·
(
2L2 − 1

)
· lcm

(∏2n

i=1
∆e(i),∆c

)
. (2)

When n = 8, lcm
(∏2n

i=1 ∆e(i),∆c

)
> 22297. Such a length is HUGE enough for any secure applications.

‖Consider the cluster size cannot be too large, it will be difficult to reveal the pseudo-random S-Box and the current
chaotic states of ECS pool via any statistical cyrptanalytic methods.
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4.2.4. Pseudo-Random S-Boxes of the Block Sub-Cipher

In this sub-subsection, we discuss the statistical properties of S-Boxes pseudo-randomly generated by the chaotic
states of ECS pool. Because the 2n ECS-es have the same invariant density function f(x) = 1 on the same
interval I = [0, 1], the generated S-Boxes by sorting the 2n chaotic states can be depicted as the rank statistics
of 2n random variables with identical and independent distribution functions. Let R(1), R(2), · · · , R(2n) denote
the rank statistics, then the following fact is true: for any permutation {i(1), i(2), · · · , i(2n)} on {1, · · · , 2n},
P{R(1) = i(1), R(2) = i(2), · · · , R(2n) = i(2n)} = 1

2n! , i.e., the rank statistics is equiprobable and symmetric [44].
It is very useful to construct ciphers with perfect cryptographic properties. Of course, there will be some weak
S-Boxes in all 2n! possible ones, but the number will be much smaller than the strong ones. What’s more,
the product of stream sub-cipher and block sub-cipher makes the detection of weak S-Boxes difficult. Under
the worse condition, if one weak S-Box is broken, only the related plain-cluster will be influenced, all other
plain-clusters with different S-Boxes will still keep secure.

4.3. Realization Complexity

Because generally L and n can be divided exactly by 8, the software realization of CVES/RRS-CVES will be
very simple, since 8-bit byte is supported well by almost all programming languages under different platforms.
Therefore, we focus on the realization complexity by hardware in this subsection.

The most important hardware devices are one L-bit digital dividers to iterate the digital chaotic systems and
a 2n × 2n sorter. Other devices include: two m-LFSR-s, and some memory units to store the CIT, current 2n

chaotic states and the generated S-Box. For CVES, the CIT needs 4 · 2n L-bit memory units and the S-Box
needs 2n n-bit memory units. For RRS-CVES, the CIT needs 8 · 2n L-bit memory units and the S-Box still
needs 2n n-bit memory units. When L = 64, m = 8, the total number of memory units of CVES is about
4 ·2n ·L+n ·2n = 67, 584 bits = 8, 448 bytes. For RRS-CVES, the total number is 9 ·2n ·L+n ·2n = 149, 504 bits
= 18, 688 bytes. In addition, a data buffer whose size equals to the cluster size may be also needed to facilitate
the substitution of the block sub-cipher after the encryption made by the stream sub-cipher.

In CVES/RRS-CVES, the sorter is the most complicated device. As we have mentioned in Sect. 4.1, how
to reduce the realization complexity and cost is the chief consideration in the realization of the sorter, since the
final speed is not chiefly determined by the sorter (the cluster size is generally larger than n · 2n/L).

4.4. Experiments
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Figure 2. Uncompressed Digital Video Encrypted with CVES

For a uncompressed digital video, we test the practical performance of CVES. In Fig. 2, we give the compar-
ison of one plain-frame and the cipher-frame. We can see the plain-image is encrypted to a cipher-image with
uniform histogram, which implies the perfect cryptographic properties of CVES.
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5. CONCLUSION

In this paper, we propose a new encryption scheme (Chaotic Video Encryption Scheme – CVES) for real-time
digital video based on multiple digital chaotic maps, which can overcome the problem between the encryption
speed and high security existing in other known video encryption systems. CVES is a product cipher that
contains a stream sub-cipher and a block sub-cipher. CVES can be extended to RRS-CVES, an enhanced
version supporting random retrieval of cipher-video with considerable maximal time-out. Detailed analyses have
shown that CVES/RRS-CVES has fast speed and high security, and can be realized easily by both hardware and
software. In the future, we will investigate the further issues about the security and realization of CVES/RRS-
CVES and try to complete the standard realization packages with VLSI (hardware) and C++ language (software).
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