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ABSTRACT
The Reconfigurable Video Coding (RVC) framework was devel-
oped to specify video codecs as abstract and as much as possible
implementation-agnostic descriptions, which are supposed to be
processed by code synthesis tools to automatically generate imple-
mentations for different target languages and platforms. However,
there are still questions about if the run-time performance of these
automatically generated RVC-based codec implementations is good
enough to run efficiently on different target platforms. In this paper,
we present a performance benchmarking study on various RVC-
based multimedia specifications (H.264/AVC and JPEG codecs, and
four multimedia security systems based on these codecs), which cov-
ers the following two aspects: 1) the run-time performance against
their corresponding non-RVC implementations on a single-core
machine; 2) the performance gain these RVC-based implementa-
tions on a dual-core machine. Based on our benchmarking results,
which show that RVC-based multimedia implementations achieve
adequate/acceptable performance, we conclude that RVC has the po-
tential to become a general-purpose but still performance-efficient
development framework for many application domains.

1. INTRODUCTION

Recently, ISO/IEC standardized RVC (Reconfigurable Video Cod-
ing) [1, 2], which was developed on the principle of dataflow pro-
gramming paradigm. Initially, the RVC framework was developed
to handle the challenges incurred in the development of complicated
video codecs [3, 4], which can naturally be modeled as dataflow sys-
tems. But the RVC standard actually offers a general development
framework and has also been used for the development of other types
of media (3-D graphics [5], image [6], audio [7]) codecs and secure
computing systems [8–10], as structurally they are all data-driven.

The main idea behind RVC is to specify a system in such a way
that that only the functionalities (or behaviors) of the algorithms are
specified via their input and output interfaces, and the implemen-
tation choice (conversion of abstract implementation-independent
solutions to implementation-dependent source codes) can be made
only until a specific target platform has been chosen. With this ap-
proach, one abstract design can be used to automatically create im-
plementations towards multiple target platforms. However, there are
still concerns about if the performance of automatically generated
implementations from abstract RVC specifications is good enough
so that RVC can be effectively used to develop practical applications
that can run efficiently on different target platforms.

In [8], we partially investigated these concerns by conducting
a performance benchmarking study on cryptographic primitives,
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which are quite simple in their structures and consist of only a few
number of functional units (FUs). However, multimedia codecs and
multimedia security systems are comparatively more complex in
their structures and normally consist of a much larger number of
FUs. This motivated us to further investigate if the conclusions of
our previous performance benchmarking study can be generalized
to more complex application domains e.g. multimedia codecs and
multimedia security systems. It deserves mentioning that except one
MPEG contribution [11], which investigates frame decoding rates of
video decoders, there is no any other work we know, which reports
the run-time performance of complex RVC-based implementations
on single-core and multi-core platforms.

In this paper, we present a performance benchmarking study
of RVC-based C implementations of an H.264/AVC intra codec, a
JPEG codec and four multimedia security systems working with the
H.264/AVC intro codec and the JPEG codec on both single-core
and dual-core machines. For our benchmarking on the single-core
machine, we present a side-by-side evaluation of these RVC-based
implementations against some selected non-RVC reference imple-
mentations and the results show that, the run-time performance of
RVC-based implementations is aquequate/comparable to their corre-
sponding non-RVC implementations. In addition, we evaluated the
amount of performance gain (i.e. execution speed-up) these bench-
marked RVC-based implementations achieved while running on a
dual-core machine and the results show that they can achieve a per-
formance gain up to 173%.

The rest of the paper is organized as follow. Section 2 briefly
covers the evaluated multimedia security systems and the details
of our experimental setup. The results of our benchmarking study
on single-core and dual-core machines are discussed in Sec. 3 and
Sec. 4, respectively. Conclusions are summarized in Sec. 5.

2. EXPERIMENTAL SETUP

We evaluated RVC-based implementations of the following four
multimedia security systems1 working with H.264/AVC and JPEG
codecs:

• Joint Video Encryption-Encoding (JVEE): As an example
of a JVEE system, we specified joint sign bit encryption and
decryption of H.264/AVC videos, where the ARC4 stream
cipher was used as the underlying cryptosystem to flip the
sign bits of all DCT coefficients.

• Joint Image Encryption-Encoding (JIEE): As an example
of a JIEE system, we specified DC encryption and decryption
of JPEG images, where the ARC4 stream cipher was again
used as the underlying cryptosystem to encrypt/decrypt the
fixed-length bits of DC coefficients.

1Greater details on the RVC specifications of these systems can be found
in [12, 10].
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• Compressed Domain JPEG Image Watermarking Em-
bedding (JIWE): As an example of a JIWE system, we chose
a compressed domain image watermarking scheme proposed
in [13] for H.264/AVC videos but we ported this watermark-
ing scheme to work with JPEG images. In this watermarking
scheme, a number of macroblocks are randomly selected for
watermark embedding and in each selected macroblock one
watermark bit is embedded in exactly one quantized AC co-
efficient. The random paths at the macroblock level and the
AC coefficients level are both driven by a stream cipher, so
an attacker does not have any knowledge about the locations
where the watermark bits are embedded [13].

• Compressed Domain JPEG Image Steganography Em-
bedding (JISE): As an example of a JISE system, we spec-
ified the JPEG compressed-domain image steganography
scheme called F5 [14]. In this scheme, the secret message
is embedded into the non-zero AC coefficients of the whole
image using a matrix embedding scheme. Before the ma-
trix embedding operation, the non-zero AC coefficients are
permuted using some pseudo random generator so that the
attacker cannot find the sequence in which the AC coeffi-
cients are used by the underlying matrix embedding scheme.
In [14], the matrix embedding scheme used in F5 is based
on the (1, n, k) Hamming distance code, where n = 2k − 1.
Hence, to embed every k bits of the message, the embed-
ding scheme changes at most one element in each set of n
non-zero AC coefficients. The parameters k and n for each
steganographic operation are computed as a function of the
size of the secret message being embedded and the number
of non-zero AC coefficients such that the message just fits
into the carrier image.

For all evaluated RVC specifications, we generated C source
code using CAL2C code generation backend of ORCC [15]. Their
corresponding non-RVC reference implementations of the H.264/AVC
codec and the JPEG codec were developed based on JM [16], the
reference software of H.264/AVC standard, and IJG’s JPEG codec
written in C [17], respectively. Regarding the C compiler, we used
the one in Microsoft Visual Studio 2008.

As a test machine for this benchmarking study, we used a
general-purpose desktop PC (HP Compaq 8000 Elite Convertible
Minitower with an Intel Pentium Dual-Core E5400 2.70GHz CPU
and 2.0 GB main memory) and conducted all experiments under the
safe-mode command prompt of Windows 7 Professional. All bench-
marking results are reported in time units, measured by the high-
resolution performance counters QueryPerformanceCounter()
and QueryPerformanceFrequency() in Win32 API [18].

For experiments on the single-core machine, we configured our
test machine to run only one of its CPU cores to simulate a real
single-core machine. For experiments on the dual-core machine, the
performance gain of all the evaluated implementations was measured
with reference to the performance achieved on experiments on the
single-core machine. For the results reported in this paper, all the
FUs of any given RVC specification are manually categorized into
two partitions2, which run as independent threads with each thread
running on its designated CPU-core of the system. This manual cat-
egorization/partitioning of FUs was performed based on the follow-
ing criteria: 1) whenever possible we kept closely-dependent FUs in
the same partition, 2) maximizing the performance by making the

2In order to keep our discussion more focused towards benchmarking re-
sults, partitions of evaluated specifications are not presented in this paper.

partitions to share the workload as equally as possible3.

For applications based on the H.264/AVC codec, we report the
run-time performance for encoding and decoding of only the first 99
frames of three test videos – foreman, highway and suzie (all with
QCIF resolution). All videos were encoded with QP = 20. For ap-
plications based on JPEG codec, we report the run-time performance
for encoding and decoding of three test images – airplane (512×512
resolution), Lena (512× 512 resolution) and yacht (512× 480 res-
olution). All images were encoded with the example quantization
table of JPEG [20, Table K.1] and the quality factor 80.

3. BENCHMARKING ON SINGLE-CORE MACHINE

In this section, we present the benchmarking results for RVC-based
implementations of the evaluated multimedia specifications against
their corresponding non-RVC reference implementations.

3.1. H.264/AVC Applications

Figures 1a and 1b show the performance benchmarking results for
evaluated implementations based on both RVC and JM codecs. We
can observe that the run-time performance of current implemen-
tations of RVC-based intra encoder and JVEE system are (more
than 100%) faster than their corresponding JM based implementa-
tions. This is may be due to the fact that the evaluated RVC-based
H.264/AVC encoder is still not complex – as it does not yet support
all encoding options (e.g., profiles, levels, inter encoding of P and
B frames, etc.). Moreover, the run-time performances of RVC- and
JM-based implementations are quite close and comparable to each
other.

It should be noted that, the sign-bit flipper module added to
H.264/AVC JVEE and JVDD systems (for encryption and decryp-
tion, respectively) makes them consume some extra time to run than
simpler encoder and decoder. In order to have an idea of how much
overhead JVEE and JVDD systems introduce to the video codec, Ta-
ble 1 shows the percentage of the total time consumed by the sign-
bit flipper module for both JM and RVC based implementations of
JVEE and JVDD systems.

Our results show that, the time overheads caused by RVC-based
implementation of sign bits encryption and decryption are always
below 7.0%. On the other hand, the time overheads caused by JM-
based implementation of sign bits encryption and decryption are sig-
nificantly smaller (less than 0.20% and 3.0%, respectively). Note
that, the magnitudes of the time overheads for the JM-JVEE and
JM-JVDD vary a lot. This can be explained by the fact that the JM
encoder takes far more time than the JM decoder (see Fig. 1), while
the the sign-bit flipper depletes roughly the same absolute time re-
gardless if its working with the JM encoder or the decoder. As a
result, the percentage of overhead time for the JM-JVEE becomes
very small. Overall, we can conclude that, even in terms of the over-
head time for sign bits encryption and decryption, the cost incurred
by RVC-based implementations is comparable to the JM-based im-
plementations.

3.2. JPEG Applications

Figures 2a and 2b show the performance benchmarking results of the
evaluated implementations based on RVC and IJG codecs. For all
implementations, one can observe that the run-time performance of

3In future, we plan to use design space exploitation tools [19] to automat-
ically suggest us more intelligent partitioning layouts of FUs.
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Fig. 1: Benchmarking results of H.264/AVC implementations.
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Fig. 2: Benchmarking results of JPEG implementations.

Table 2: Overhead time consumed by the added security module in JPEG security systems.

(a) RVC

Test Images JIEE JIDD JIWE JIWD JISE JISD
airplane 7.02% 20.13% 13.67% 15.73% 26.46% 44.11%

Lenna 6.06% 20.00% 5.60% 15.13% 24.50% 43.85%

peppers 6.00% 21.59% 4.91% 14.09% 22.52% 43.52%

(b) IJG

Test Images JIEE JIDD JIWE JIWD JISE JISD
airplane 11.25% 11.55% 15.84% 18.50% 26.08% 31.12%

Lenna 9.28% 12.50% 14.80% 17.66% 23.52% 30.11%

peppers 11.13% 15.01% 16.85% 21.98% 27.77% 34.39%

RVC-based encoder implementations are (more than 200%) slower than their corresponding IJG-based counterparts. This is due to the



Table 1: Overhead time consumed by the sign-bit flipper module.

Test
Videos

JM-
JVEE

JM-
JVDD

RVC-
JVEE

RVC-
JVDD

foreman 0.16% 2.77% 6.01% 6.73%

highway 0.18% 2.41% 1.98% 6.55%

suzie 0.17% 2.54% 2.25% 6.97%

fact that the evaluated RVC-based JPEG encoder is less optimized
than the IJG one (which has been carefully optimized for many
years). However, the run-time performance of RVC- and IJG-based
decoder implementations are comparable to each other. This sug-
gests that the RVC-based JPEG decoder is already good enough and
may not require too much further optimization.

Like Table 1, Table 2 shows the percentage of the total time con-
sumed by the added security module to both IJG and RVC based im-
plementations of image encryption encoder/decoder, watermarking
embedder/detector and steganographic embedder/detector systems.

The time overheads caused by RVC-based JPEG DC encryp-
tion and decryption are less than 8% and 22%, respectively. Sim-
ilarly, the time overheads for RVC-based JPEG image watermark
embedder and detector are less than 6.00% (with airplane consum-
ing comparatively an odd amount of 13.67%) and 16%, respectively.
Moreover, RVC-based JPEG image steganographic embedder and
detector have an exceptionally higher overhead time: 22% to 27%
and 43% to 45%, respectively. This can be explained by the fact that
the steganographic technique being evaluated requires buffering the
whole image in order to pseudo-randomly permute it and then per-
form the matrix embedding operation to actually embed the secret
message into the carrier image. This activity results in consuming
an exceptionally higher amount of overhead time.

The time overheads caused by the IJG-based implementations
generally follow the trends observed for RVC-based implementa-
tions (except for JPEG DC encryption and decryption, which con-
sumes higher overhead time than the corresponding RVC-based im-
plementations). Similarly, JPEG steganographic embedder and de-
tector schemes also consume higher amount of overhead time be-
cause of the same reasons reported above.

4. BENCHMARKING ON DUAL-CORE MACHINE

In this section, we present the performance benchmarking results of
evaluating the amount of performance gain RVC-based implementa-
tions of H.264/AVC and JPEG codecs and the four multimedia secu-
rity systems can achieve on a dual-core machine.

4.1. H.264/AVC Applications

Figure 3a shows the performance gain we observed for RVC-based
implementations of H.264/AVC codec and sign bits encryption sys-
tem. One can observe that both of the encoder implementations
achieve a performance gain between 159% and 173%. However, the
performance gain achieved by both of the decoder implementations
is lower – between 110% to 119%.

These results lead to the following two interesting observations.
First, even though both JVEE and JVDD systems includes an added
sign bits flipper module, the performance gains achieved by both sys-
tems are better than the simpler encoder and decoder, respectively.
Second, we know that the H.264/AVC decoder is not as complex as
H.264/AVC encoder (i.e., decoder consists of a lesser number of FUs
than the encoder) but the performance gains achieved by the decoder
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Fig. 3: Performance gain we achieved for RVC-based implementa-
tions on a dual-core machine.

implementations is far lower than the performance gains achieved
by the encoder implementations. Based on these two observations,
one may hypothesize that, the encoder specifications have more par-
allelizable components/FUs than the decoder specifications and the
increase in the complexity of an RVC specification provides an op-
portunity to reconfigure the specification in a way to exploit more
parallelism. More insights about these aspects can be determined by
conducting a low-level profiling of these RVC encoder and decoder
specifications. In addition, the low-level profiling may also be help-
ful in acquiring the best possible load-balancing of the parallelizable
components and may further improve the overall performance gain.
In future, we plan to study these aspects in more detail.

4.2. JPEG Applications

Figure 3b shows the performance gain we observed for RVC-based
implementations of JPEG codec, encryption, watermarking and
steganographic systems. The performance gains achieved by the
steganographic implementations are quite low (for JISD it is even
negative). This can be explained by the algorithmic detail of stegano-
graphic technique being evaluated – the embedding and detection of
the secret message requires buffering the whole image. Hence, the
steganographic modules become the bottleneck and (almost) freezes
the dataflow in all other FUs of the system, and as a result this severe
performance drop is created.



With the steganographic system as an exception, the perfor-
mance gains achieved by the encoding implementations are compar-
atively higher (between 142% and 164%) than the gains achieved
by the decoding implementations (between 127% and 148%). This
matches to the results we obtained for the H.264/AVC-based imple-
mentations and adds more evidence to our hypothesis on why this
happens.

5. CONCLUSIONS

In this paper, we report our benchmarking results on the run-time
performance of RVC-based implementations of multimedia specifi-
cations against their corresponding non-RVC reference implemen-
tations on a single-core machine and their performance gain on a
dual-core machine. Our benchmarking results showed that auto-
matically generated RVC-based implementations can achieve ade-
quate/acceptable performance, hence answered the concern about
the performance of RVC-based implementations. These results en-
courage the community to further evolve RVC and make it a general-
purpose but still performance-efficient development framework for
application domains beyond video codecs.
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